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Abstract
Ordering physical states is the key to quantifying some physical property of
the states uniquely. Bipartite pure entangled states are totally ordered under
local operations and classical communication (LOCC) in the asymptotic limit
and uniquely quantified by the well-known entropy of entanglement. However,
we show that mixed entangled states are partially ordered under LOCC even in
the asymptotic limit. Therefore, non-uniqueness of entanglement measure is
understood on the basis of an operational notion of asymptotic convertibility.

PACS numbers: 03.65.Ud, 05.70.−a, 03.67.Mn

1. Introduction

Accessibility between two physical states by some physical process is crucial in being able to
compare the states quantitatively. When there exists an operation that converts one state into
another, we can derive an ordering between the two states from the accessibility based on this
operation. This ordering (together with a few other natural assumptions) makes it possible to
define a quantity that compares the states. However, if it is impossible to convert one state into
another in either direction within a given framework, there exists no coherent way to compare
those two states.

Uniqueness of a measure that quantifies a certain physical property is strongly related
to ordering of states. When all elements in a given set of physical states can be completely
ordered, i.e. an arbitrary two states can be ordered (total order), we can make at least one
consistent measure that quantifies the set. However, if there exists no ordering that works
globally, i.e. a certain pair of states cannot be ordered (partial order), then we fail to find a
consistent way to ‘align’ all the states. In other words, total order is a necessary condition for
a set to be quantified by the unique measure.
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One of the most familiar examples in physics that contains partial order is in the special
theory of relativity. A pair of events in the spacetime that include each other in their light
cone (i.e. the interval between the two events is time-like) are accessible because one can
affect the other by sending some signal. However, if one is outside the light cone of the
other (i.e. the interval between the two events is space-like), then it is impossible to connect
them by any physical operation. Therefore, there exists no unique way of ordering two such
states; different orderings are possible by choosing different reference frames. Therefore, the
set of events is a partially ordered one, which leads to the well-known non-uniqueness of
simultaneity that follows from the principles of special theory of relativity (see chapter 17 of
[1], for example). Furthermore, in a modern approach to relativity, a fundamental structure
of spacetime is modelled as a partially ordered set called a causal set [2].

An important example of partial order in a purely mathematical context is the theory of
majorization [3], which is a powerful tool for comparing two vectors and deriving various
inequalities between operators. For example, majorization brings partial order to probability
vectors and leads to useful inequalities of quantities related to entropy in statistical mechanics
[4]. An intimate relation between majorization and quantum information theory has also been
discovered recently, which we will mention below.

The most beautiful and successful application of the theory of ordering physical states is
in thermodynamics, where all equilibrium states are totally ordered under adiabatic processes
and quantified by the unique measure of entropy. Given two equilibrium states (A and B),
entropy S distinguishes between possible and impossible directions of adiabatic processes
between the two states; A can access B via an adiabatic process iff S(A) � S(B). (If the
equality holds, B can also access A and so the process becomes reversible.) The uniqueness
of entropy was proved by Giles with his axiomatic approach, which was developed to clarify
the structure of thermodynamics [5]. Giles’s work is a culmination of the movement towards
a more lucid understanding of the second law of thermodynamics, starting with Carathéodory
(see [6]). This approach has recently been revisited by Lieb and Yngvason [7, 8].

It has been shown recently that thermodynamics and the theory of pure-state entanglement
share the same mathematical structure, Giles’s rigorous set of mathematical axioms. Adiabatic
processes in thermodynamics correspond to manipulations of bipartite pure entangled states by
local operations and classical communication (LOCC) in the context of quantum information
theory [9]. Therefore, bipartite pure entangled states are totally ordered under LOCC in the
asymptotic limit, and entropy gives the unique measure in this context as well (known as the
von Neumann entropy of entanglement [10, 11]).

In quantum information theory [12], quantum entanglement has been a subject of intensive
research because it is a new resource in physics as well as an indispensable resource in quantum
information processing. As in the case of other physical resources, it is desirable to find a
unique measure of entanglement in order to exploit it effectively and efficiently. (For a review
of entanglement measures see [13].) In contrast to the case of bipartite pure states, the unique
measure of entanglement in mixed states has not yet been established. It has been proved that if
two entanglement measures coincide in pure states but differ in mixed states, then they impose
different orderings [14]. In fact, some entanglement measures proposed so far are different,
and it is commonly believed that we need different entanglement measures depending on the
scenario.

In this paper, we show that mixed entangled states are partially ordered under
an operational notion of asymptotic LOCC convertibility by using the monotonicity of
entanglement cost and the fact that positive partial transposition (PPT) bound entangled
states cannot be converted into negative-partial-transposition (NPT) entangled states by
LOCC. Thus, we point out that the partial order structure underlies the non-uniqueness of
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entanglement measure. This immediately reveals the reason why Giles’s axiom fails in
mixed-state entanglement, especially axiom 5, which reads if two states A and B are both
accessible from another state C, then A and B are accessible in either direction (or both). This
is exactly what distinguishes total order from partial order. We show the partially ordered
structure of mixed entangled states by giving a counterexample to axiom 5. (For other natural
axioms and details of Giles’s approach, see [5, 9].)

The violation of axiom 5 can be seen, for example, in the theory of relativity mentioned
above: even if two events A and B are accessible from another event C, the events A
and B are not necessarily accessible from each other because one can be outside the light
cone of the other. Another example violating axiom 5 is in entanglement manipulation of
bipartite pure states in finite regimes. For example, although both |φ1〉 = 1√

2
(|00〉 + |11〉)

and |φ2〉 =
√

2
3 |00〉 + 1√

6
|11〉 + 1√

6
|22〉 can be obtained from a maximally entangled state

|�3〉 = 1√
3
(|00〉 + |11〉 + |22〉) by LOCC, |φ1〉 and |φ2〉 cannot be converted into each other

by LOCC with certainty. This is a direct consequence of Nielsen’s theorem, which connects
entanglement manipulation and majorization mentioned above [15]. In the following, we will
say two states A and B are incomparable if they are not accessible from each other.

The rest of this paper is organized as follows. First, we present a counterexample, and
thus prove the partial order structure of mixed entangled states. Then, we discuss one possible
way of recovering total order. Finally, we conclude the paper with future directions.

2. Partial order on mixed entangled states

First, let us rigorously define the accessibility in axiom 5 within our context. The asymptotic
convertibility under LOCC is defined as follows: a state ρ is convertible into a state σ if and
only if for every (arbitrarily small) real number ε, there exists an integer n0, and a sequence
of LOCC Ln such that for any integer n � n0 we have

‖Ln(ρ
⊗n) − σ⊗n‖� ε (1)

where ρ⊗n = ρ ⊗ ρ ⊗ · · · ⊗ ρ represents a tensor product of n copies of the state ρ and ‖· · ·‖
denotes the usual trace norm distance between two mixed quantum states. Loosely speaking,
this means that one state can be converted into another if a certain number of copies of the
former can arrive at an arbitrarily good approximation of the same number of copies of the
latter via LOCC in the asymptotic limit. We will prove that the set of mixed entangled states
is a partially ordered one under this definition of accessibility. This is our central result in
this paper. While partial order in bipartite pure states in finite regimes can be turned into total
order in the asymptotic limit under this accessibility, mixed entangled states still retain partial
order structure even in the asymptotic limit. Note that we consider the convertibility between
the same number of copies here unlike the ordinary argument of transformations between
different numbers of copies, e.g., from n copies to m copies. In the transformations between
different numbers of copies, it is no wonder that the transformation is possible at least in one
direction if sufficiently large number of copies of the initial state are prepared. Thus, the
partial order structure does not clearly appear in the framework, while it can be easily seen
in transformations with the same number of copies as we will show below. It is enough to
consider the convertibility between the same number of copies to see whether it is possible to
compare them because if one state is ‘larger’ than the other, the former should be converted
into the latter even in this framework.

Intuitively, the bipartite mixed states that are most likely to fail axiom 5 are bound
entangled states [16]. Since bound entangled states are mixed states from which no entangled
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pure state can be distilled, if we take one of those, ρAB, and a pure entangled state, σAB, as a
pair of possible candidates for a counterexample, the first half of the proof has already been
accomplished by definition, i.e. ρAB → σAB is impossible for all pure states σAB. So, all we
have to do is to disprove the convertibility in the opposite direction.

In order to prove that, we take a particular bound entangled state constructed from an
unextendible product basis (UPB) [17]. Suppose both Alice and Bob have three-level quantum
systems (qutrits). Consider the following incomplete orthonormal product basis:

|ψ1〉 = |0〉 ⊗ 1√
2
(|0〉 + |1〉)

|ψ2〉 = 1√
2
(|0〉 + |1〉) ⊗ |2〉

|ψ3〉 = |2〉 ⊗ 1√
2
(|1〉 + |2〉)

|ψ4〉 = (|1〉 + |2〉) ⊗ |0〉
|ψ5〉 = 1√

3
(|0〉 − |1〉 + |2〉) ⊗ 1√

3
(|0〉 − |1〉 + |2〉).

(2)

This incomplete orthogonal basis forms a UPB, which means that there exists no product
state orthogonal to all of the above five states. Consequently, the four-dimensional subspace
complementary to this five-dimensional one does not contain any product states. Therefore,
with a normalization factor, the projection operator onto this complementary space

ρAB = 1

4

(
I −

5∑
i=1

|ψi〉〈ψi |
)

(3)

turns out to be an entangled state. It can also be easily seen that this state satisfies the PPT
condition because the identity operator and projections onto product states like |ψi〉〈ψi | remain
positive after partial transposition. Thus, ρAB is proved to be a PPT bound entangled state.

The important fact about the state ρAB is that its entanglement cost EC(ρAB) is positive
[18], which is defined as EC(ρ) ≡ limn→∞ Ef (ρ⊗n)/n [19], where Ef (ρ) represents the
entanglement of formation of ρ [20]. (It is obvious that some amount of entanglement is
necessary to construct one copy of a bound entangled state. Until quite recently, however, it
was an open question whether the entanglement cost of bound entangled states is also positive
[18].) Owing to this property, one can choose a pure entangled state σAB = |φ〉〈φ| such that

0 < EC(σAB) < EC(ρAB). (4)

For simplicity, we choose |φ〉 to be an entangled states with Schmidt number two or three, i.e.
a 2 × 2 or 3 × 3 system. Since the entanglement cost EC is an entanglement monotone,
i.e. it cannot increase under LOCC, σAB can never be converted into ρAB even asymptotically,
i.e. σAB → ρAB is impossible. The monotonicity of entanglement cost EC can be easily derived
from the fact that entanglement of formation EF is also an entanglement monotone. Note
that the above incomparability holds in the sense of the same number of copies. Otherwise,
a sufficiently large number of copies of σAB can always produce a much smaller number of
copies of ρAB with certainty.

Besides the above fact, note that a maximally entangled state |�3〉AB can access both ρAB

and σAB. (Although the state |�3〉AB might not be the most efficient example to produce them,
this does not matter here. One can make one copy of either ρAB or σAB from one copy of
|�3〉AB by LOCC.) Therefore, we found a counterexample that the two states ρAB and σAB are
not convertible into each other in spite of the fact that both of them can be accessed from the
same state |�3〉AB. This clearly shows that entangled mixed states are partially ordered under
LOCC in the asymptotic limit and thus violate axiom 5. (We note that although, in Giles’s
axioms, transformations assisted by asymptotically negligible amount of auxiliary states are
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Figure 1. Partial order structure in mixed entangled states. |�3〉 = 1√
3
(|00〉 + |11〉 + |22〉), ρAB

is a bound entangled state defined in equation (3), and σAB is a pure entangled state satisfying
0 < EC(σAB) < EC(ρAB). The pure state σAB can be replaced with any NPT entangled state χAB
satisfying the same condition.

considered, the undistillable property of bound entanglement remains unchanged even with
the assistance of auxiliary entangled states [18].)

In the above argument, we chose a pure state as σAB for simplicity. However, it can
be replaced with distillable mixed states χAB such that 0 < EC(χAB) < EC(ρAB) because
PPT bound entangled states cannot be converted into NPT ones by LOCC, i.e. ρAB → χAB is
impossible for all NPT states χAB. Thus, the above also holds for any such χAB. (Furthermore,
the monotonicity of other entanglement measures can also be used for the above argument
instead of entanglement cost.) Generally, it is concluded that any PPT bound entangled
state with positive entanglement cost always has incomparable states in the NPT regime (see
figure 1). These states are the counterexamples to axiom 5, which prevents us from applying
Giles’s approach to mixed entangled states within the framework of LOCC convertibility.

Therefore, we have proved that the set of mixed entangled states is a partially ordered
one under the operational notion of asymptotic convertibility with LOCC, which underlies
the non-uniqueness of entanglement measure. Since there is no operational way to link
incomparable states, there exists no way of assigning meaningful amounts of entanglement to
them that could determine which state is more entangled. In other words, it is the partial order
that allows us to use various entanglement measures known so far without any contradiction.
Metaphorically speaking, we have shown a sort of ‘relativity’ of entanglement measure under
asymptotic convertibility with LOCC, which means that there exists no absolute entanglement
measure at least under LOCC.

3. Recovering total order

Next we discuss the possibility of recovering total order from partial order, which might lead
to a unique measure of entanglement. Obviously, an extra operation besides LOCC will be
necessary to achieve it. One naive way is restoring quantum information discarded into the
environment, which can be seen as follows.

First, let us think about how the total order structure of pure entangled states changes
into a partial one during the formation process of mixed entangled states. Imagine a process
making the state ρAB in equation (3) from a maximally entangled state by LOCC. The state
can be written as ρAB = 1

4

∑9
i=6 |ψi〉〈ψi |, where |ψi〉 (i = 6, . . . , 9) is an entangled basis

complementary to the UPB in equation (2). One way of making ρAB is as follows (it is
not necessarily the most efficient way from the viewpoint of the amount of entanglement
invested). Alice and Bob first prepare a three-level maximally entangled state |�3〉DB between
them. Besides this, Alice prepares two qutrits, A, B′, and a four-level ancilla C (e.g. two
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qubits) locally, with which she makes a superposed state |ω〉CAB′ = 1
2

∑9
i=6 |i〉C|ψi〉AB′ . By

teleporting the system B′ to Bob with the previously shared entanglement |�3〉DB, they succeed
in constructing a state |ψ〉CAB = 1

2

∑9
i=6 |i〉C|ψi〉AB between them. This state changes into

the mixed state ρAB immediately after Alice throws away the system C into the environment.
Generally, the total order structure survives until Alice discards the information because

the entire state is just a pure state. Therefore, if she could retrieve the quantum information
from the environment, the total order would be recovered as well. Although this may appear
impractical if we try to find realistic operations that make it possible to restore quantum
information from the environment, it is possible in principle. In fact, we can also imagine
some artificial situation, which might be plausible in the context of information processing,
where Alice gives the system C to the third party, e.g. Charlie, not to the environment. In this
situation, restoring the quantum information is not impractical at all. In other words, if we
purify (mathematically) a bipartite mixed state ρAB into a pure state |ψ〉CAB by introducing
a local ancilla C at Alice’s side virtually, then all states become pure states and we should
recover total order.

With this restoring process, we can tell which state of incomparable states would have
more entanglement than the other, if Alice had not lost the quantum information in the
formation process. We quantify entanglement of pure states by using entropy of entanglement
as usual: if the restored state is |ψ〉CAB, then we define the amount of entanglement E(ρAB)

between Alice (CA) and Bob (B) as the von Neumann entropy of Bob’s reduced density
matrix trCA(|ψ〉CAB〈ψ |). It is shown below that the bound entangled state ρAB would have
more entanglement than the incomparable state σAB = |φ〉〈φ|. (The approach here is similar
to the definition of entanglement of purification [21], where the entanglement is minimized
over all possible purification on both Alice’s and Bob’s sides. Thus, our quantity is always
greater than this.)

It is easily seen that E
(
ρ⊗n

AB

)
� Ef

(
ρ⊗n

AB

)
due to the concavity of the von Neumann

entropy [20]. Thus, we also have limn→∞ E
(
ρ⊗n

AB

)/
n = E(ρAB) � EC(ρAB) = limn→∞ Ef(

ρ⊗n
AB

)/
n. Note that E and EC coincide for pure states. Since we chose σAB according to

equation (4), E of the bound entangled state is always greater than that of the incomparable
pure state, i.e. E(σAB) = EC(σAB) < EC(ρAB) � E(ρAB). Therefore, any incomparable
states with equation (4) satisfy E(σAB) < E(ρAB).

We have considered a simple example of recovering total order by restoring information
from the environment. Besides the above case, we can conceive other scenarios with different
formation processes. For example, Alice could perform a measurement on the system C
and then discard the classical information of the outcome instead of discarding the quantum
system directly. In this case, in order to recover total order, she would restore just classical
information and generally end up in a different pure state from the original one. A striking
example is 1

2 (|00〉AB〈00| + |11〉AB〈11|), which will be recovered to a GHZ state in the former
scenario, while it will be recovered to just a separable state in the latter. (In fact, the above
quantification of E assigns a positive value 1 to this state. This unpleasant quantification is
due to the prescription designed only to compare incomparable states.) Therefore, it is fair to
say that recovered total order is highly dependent on how information was lost and retrieved.
(See also [22] in a different context of entanglement versus information loss.)

4. Discussion and conclusion

It is worth investigating the partial order structure of mixed entangled states in detail. Although
it was proved only for bound entangled states, we believe the partial order structure is embedded
in distillable states as well. It is also known that there exist distillable states for which
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entanglement cost is strictly greater than distillable entanglement [23, 24]. Thus, this gap
between entanglement cost and distillable entanglement also leads to the same argument
as in the case of bound entangled states just proved: suppose ρAB is a distillable mixed
state such that ED(ρAB) < EC(ρAB). Then, ρAB is incomparable with a pure state whose
entropy of entanglement is sandwiched between ED(ρAB) and EC(ρAB). (The monotonicity
of distillable entanglement is invoked here instead of the fact that PPT bound entangled states
are not accessible to NPT entangled states.) Therefore, it is concluded that the partial order
structure lies in distillable states as well.

In summary, we proved the partial order structure of mixed entangled states under
the operational notion of asymptotic convertibility with LOCC, which makes it possible
to understand the non-uniqueness of entanglement measure based on a very general argument
on physical accessibility. The origin of the partial order is likely to be closely related to
information loss. An important future direction is finding out exactly how the thermodynamical
structure of pure states breaks down when mixedness appears in entanglement.
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